
- ~ ~ Gamnegie-Mellon University .t: .

- Software Engineering Institute

The Priority Ceiling Protocol:
A Method for Minimizing the
Blocking of High-Priority Ada

- Tasks
1%. . - ~~~~John B. Goodenough*- ~ -:&:K-

AMN- IS7

March 1988

DTv- 9~.

LECTE
~eAPR-0 5

At V

7,4~

Special Report
CMU/SEI-88-SR-4

March 1988

I

1 The Priority Ceiling Protocol: A Method
I for Minimizing the Blocking of

High-Priority Ada Tasks

II John B. Goodenough
* Lui Sha

I
I
I
I
I
I

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

I

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information

exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Dan Burton
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1987 Carnegie Mellon University
This document is available through the Defense Technical Information Center. OTIC provides access to and transfer of
sacentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Ann: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly- National Technical Information Services. U.S. Department of Commerce,
Springfield. VA 22161.

I

Table of Contents
3 1. Introduction 1

2. The Priority Ceiling Protocol for Ada 3
3. Summary 6
4. Acknowledgement 6

References 7

I
I

I

I
I
I
I Aceession For

NTIS CRA&I

DTIC TAB 5
Unahnxonoed 0
Juatlfloation

Distribution/Availability Codes

Avail and/or
Dist Special

,I
U CMUISEI-88-SR.4

I

I
I
I
I
I

CMU/SEI-88-SR-4 N
I

1 List of Figures
Figure 1: Critical Reg ions Mapped as Ada Tasks 2
Figure 1: The Priority Ceiling Protocol 10
Figure 2: The Basic Inheritance Protocol 14

IM/E-8S-

I

The Prior ty Ceiling Protocol: A Method for Minimizing
*I the Bloc ng of High-Priority Ada Tasks

Abstract. The priority ceiling protocol is a new technique that addresses the priority
inversion problem, i.e., the possibility that a high-priority task can be delayed by a
low-priroity task. Under the priority ceiling protocol, a high priority task can be blocked
at most once by a lower proirity task. This paper defines how to apply the protocol to
Ada. In particular, restrictions on the use of task priorities In Ada are defined as well as
restrictions on the use of Ada tasking constructs. An extensive example illustrating the
behavir guaranteed by the protocol is giveq .

This paper was presented at the 2nd International Workshop on Real-Time Ada Issues
* in May 1988.

1. Introduction

At the First International Workshop on Real-Time Ada Issues, it was reported that a high-priority
Ada task can be delayed indefinitely by lower priority tasks under certain conditions [11.1 The
delay of a high-priority task by a lower priority task is called priority inversion. Priority inversion
occurs because of task synchronization requirements and, therefore, cannot be completely
eliminated; but it can be minimized. Two recently defined protocols for scheduling real-time proc-
esses provide solutions to the priority inversion problem [4]. Both protocols assume the use of
binary semaphores to synchronize access to shared resources. In this paper, we extend these
protocols to Ada.

The basic priority inheritance protocol, as defined in [4J, has the following important property:

If m distinct semaphores are used by n lower priority processes, a process can be
blocked for at most the duration of min(m, n) critical sections [4].

Hence, the basic priority inheritance protocol places an upper bound on the blocking delay that a
process can encounter. The priority ceiling protocol [4] improves the basic priority inheritance
protocol by minimizing the blocking time of a process to at most the duration of a single
(outermost) critical section of a lower priority process. It also prevents nontrivial forms of dead-
lock.

The basic priority inheritance and ceiling protocols can be applied to Ada 1) If Ada tasks are
written following certain rules and 2) if the rules governing the scheduling of tasks are changed
slightly. In essence, the idea is to represent each semaphore as a server task. Each critical
region is represented as an entry of the task. For example, consider two processes, J1 and J2 ,
that access a single semaphore, S:

IJ, "[.... P(S) - V(S) .. P(S) ... V(S) ... }

J2" -I P(S)- V(S),..

The corresponding Ada task structure is shown in Figure 1.

I 'These conditions are not unique to Ada. They can arise in any system in which the need to acoess shared resources
causes a low-priority task to block the execution of a higher priority task.

I CMU/SEI-88-SR-41

I

I
I

task body T1 Is -- corresponds to ,/i
begin

Server.El; -- corresponds to first critical region of J1

Server.E2; -- corresponds to second critical region of J1

end T;

task body T2 Is -- corresponds to J2 I
begin

Server.E3; -- corresponds to critical region of J2

end T2;

task body Server Is -- contains critical regions guarded by semaphore S
begin

loop
select I

accept El do ... end El; ""J1's first critical region
or accept E2 do ... end E2; ", '1 s second critical region
or accept E3 do ... end E3; -- J2's critical region
or terminate;
end select;

end loop;
end Server;

Figure 1: Critical Regions Mapped as Ada Tasks I
To apply the priority ceiling protocol in Ada, a programmer must obey the following restrictions on
the use of Ada tasking features: 3

1. All accept statements in a task must be contained in a single select statement that
is the only statement in the body of an endless loop. There must be no guards on
the select alternatives and no nested accept statements. (Such a task structure
models the notion of critical regions guarded by a semaphore, thus allowing us to
apply the previously developed theory to a system of Ada tasks. A task that con-
tains such accept statements is called a server task. A client task is a non-server
task that contains at least one entry call.)2r

2. There must be no conditional or timed entry calls. (These forms of call have no
simple analogues in the binary semaphore version of the theory; they are excluded
to simplify our application of the theory to Ada.)

3. Each task must be assigned a priority. (Hence, the execution of one task can be
preempted by the execution of a higher priority task.)

2A task that contains no accept statements or entry calls is a non-server task but not a dient task. Therefore, the set of
non-server tasks is not the same as the set of dient tasks.

2 CMU/SEI-88-SR-4

ffI

4. A server task must have a priority lower than that of any of its client tasks.3 (This
restriction ensures that entry calls are executed with the correct priority. For ex-
ample, in the simplest case, a rendezvous is executed with the priority of the calling
task. This corresponds to executing a critical region with the priority of the process
that contains it.)

Further theoretical work may allow the priority ceiling protocol to be extended to a wider variety of
Ada tasking structures, but the purpose of this paper is to Indicate the advantages of the protocol
when It is applied directly to Ada. Given these restrictions, using the priority ceiling protocol on a
single processor guarantees the following properties [4]:

1. The queue for a particular entry can have at most one calling task. (Hence, priority
queues are not needed.)

2. If a task is queued for one alternative of a select statement, no tasks are queued for
any other alternatives. (Hence, at most one entry call is queued for a given server
task and there is no need to specify that in a selective wait, the highest priority
queued task is selected for execution; there is at most one waiting task.)

3. Execution of a high-priority non-server task can be delayed by at most one lower
priority client task for at most the duration of the longest entry call made by that
task. (This is a bounded form of priority inversion.)

4. Deadlock cannot occur as long as a task does not call itself. 4

5. Blocked calls to the same server are serviced in order of priority.

i The following section defines the priority ceiling protocol for Ada.

I 2. The Priority Ceiling Protocol for Ada
A server task is a task whose accept statements are all contained in a single select statement
that is the only statement in the body of an endless loop. Server tasks are the only form of task
allowed to contain an accept statement under the current version of the priority ceiling protocol. A
client task is a non-server task that contains at least one entry call. A server task is said to be
executina on behalf of client task T if the server has been calleds either by T or by a server task
that is executing on behalf of T. The priority ceiling of a server task is defined as the highest
priority of its client tasks, i.e., the highest priority of tasks that can call the server directly or

indirectly. For example, suppose client task T1 calls server 1. In addition, client task T2 calls
server 2, and server 2 calls server 1 during its rendezvous with task T2. The priority ceiling of
server I is the maximum priority of tasks T1 and T2.

The priority ceiling protocol uses the following definitions:

3A non-erver task that makes no entry calls can have a priority lower than to prot of a server task. A dient task3 can have a priority lower than a server task if it never calls that server, directly or indirectly.

4Given the mapping from critical regions to Ada tasks, having a task call itself would be equivalent to trying to lock a
semaphore while inside a critical region guarded by that semaphore. The piodrity ceiling protoco prevents deadlock
caused by mutual waitng; e.g.. under this protocol, it cannot be the case that server task S is attempting to call server
task S2 while S2 is attempting to call Si.

OThe calling task i either queued on an entry or the server is in rendezvous with the caller.

CMU/SEI-88-SR-4 3

1. Let T be a client task attempting to call a server. The attempted call is blocked
unless Ts priority is greater than the priority ceiling of each server task that is
executing on behalf of some task other than T.6

2. A server task S is said to block the execution of non-server iask T if S is executing
on behalf of some other client task U, T's priority is greater than U's,

a. T Is attempting to call a server (not necessarily S), and S has a priority
ceiling greater than or equal to T's priority, or

b. S is called by a server that blocks the execution of T, or
c. S is blocking the execution of some task whose priority is higher than T's

priority.

Definition 1 is used later when defining how blocked calls are processed. Definition 2 is used
later to define the execution priority of a server task. Definition 2b defines a form of blocking that
can occur when a task is not making or executing an entry call.

Given the restricted usage of Ada constructs and the definitions of blocking, the priority ceiling
protocol is defined as follows:

1. When an attempted entry call is blocked, the call is not made and the calling task's
execution is suspended. 7 (This ensures that at most one task is queued for a
server task.)

2. A server executes at its assigned priority except when it is executing on behalf of a
client task. In this case, it executes at the priority of its client unless rule 3, below,
requires execution at a higher priority. (This rule means a server task can execute
at higher than its assigned priority even if it is not in a rendezvous. Although the
priority of a server task is increased by this rule, the server is not said to inherit its
client's priority; Instead, it Is considered to be executing as part of its client and
therefore executes at its client's priority.)

3. If a server blocks the execution of one or more tasks, the server executes with the
highest priority of the tasks it blocks until the server has completed execution of an
accept statement, at which point its execution priority becomes the higher of either
its assigned priority or its priority as determined by these rules. (Since it will usually
be the case that a higher priority task is ready to run when the rendezvous is
completed, the server task is usually preempted after completing a rendezvous.
The server is said to inheritthe priority of the highest priority blocked task. This rule
allows the execution of a lower priority client task to delay the execution of a
medium-priority task when the lower priority task has called a server and the server
is blocking the execution of a high-priority task. The medium-priority task pays this
price to avoid blocking the high-priority task. This is a form of priority inversion.)

Note that the priority of a server task changes depending on which tasks it is serving or blocking,
and that a server can block tasks that are not requesting service; i.e., a calling task can be

elf a server task attempts to call another server, the priority ceiling protocol guarantees that this call will never be
blocked.

7Note that a call is blocked if the server task is executing a rendezvous or If another task is queued on an entry, since
the servers priority ceiling will necessarily be greater than or equal to the callers priority 141. Thus the above rule indudes
the usual condition under which a calling task is blocked. However, the difference here is that the calling task is blocked
before the cal is actually made and placed in an enty queue.

OThe priority of the blocked tasks will always be higher than the priority of the server's client task.

4 CMU/SEI-88-SR-4

I
blocked even though the called server is not executing any call.9 Moreover, when a rendezvous
Is completed, the set of blocked tasks can change; in particular, (at most) one task can be un-
blocked.

The basic priority inheritance protocol is like the priority ceiling protocol except for the definition of
blocking: an attempted call is blocked (Definition 1) and a server blocks a calling task (Definition
2a) only if the called task is executing on behalf of some task, i.e., blocking does not take into
account priority ceilings or whether other servers are executing.

In [4], the following theorem was proved:10

Theorem 1: A set of n periodic non-server tasks using the priority ceiling protocol can
be scheduled by the rate monotonic algorithm [21 if the following conditions are satis-
fied:

C, c 2 CB,
V i, I £/ I, S

where,

* C, is the execution time of non-server task 'r (the execution time includes the
time required to execute an entry call when there is no preemption or blocking).

* T is the period of non-server task ;i.
* B is the worst-case blocking time of non-server task T.i.e., the longest entry

call that can be made by a lower priority client task that calls a server whose
priority ceiling is greater than or equal to ci's priority.11

Task ti has a higher priority than taskj if i< j.12

For example, suppose that we have three non-server tasks. For highest priority task t1 , we first
check if equation C1 /T1 + B1/T 1 :s 1 holds. Next, we check if equation C,/T, + C2/T2 + B2/T2 <_
2(21/2 - 1) holds for task 'T2. Finally, we check if equation C1/T, + C2/T2 + C3/T3 + B3/T3 < 3(2113

- 1) holds for task t3. If all three equations hold, then the tasks will meet all their deadlines; i.e.,
each task will complete its work before the start of its next period.

The first i terms in the theorem's inequality constitute the effect of preemptions from all higher

IFor example, suppose server S1 has been called by a task at priority 1 and then a task at priority 2 attempts to call
server S2. If Si's priority ceiling is equal to or higher than 2. task 2's call will be blocked even though S2 is able to acceptft. This seemingly unnecessary blocking is in fact the key to the success of the priority ceiling protocol. The protocol
ensures that when a tak preempts a server and attempts to :.all another server, ft now server wvill never block a higher

I priority task if th call is successful.

'*The theorem has beew reworded to apply to Adb.

"Note that task t, can have a non-zero blocking time (i.e., can be delayed by the execution of a lower priority task)
even if it makes no entry calls, sime blocking time is detmmined by entry calls made by lower priority taks. This is an
example of push-through blocking (e fte Appendix).

' 2Note that for purposes of applying this theorem, task tl has the highest priority, although in Ada a task with prionty n
would have the highest priority. In the scheduling literature, the notational convention is that task i's priority is higher than

eN i < j. In addition, use of the rate monotonic algorithm means that T, < TI (i.e., higher priority tasks have shorter

I 5
CMUISEI-88-SR-4

I

priority tasks and si's own execution time, while Bi in the last term represents the worst-case

delay caused by the execution of lower priority tasks. Blocking delays occur because of task

synchronization requirements. The theorem specifies a sufficient (worst-case) condition that 3
characterizes the rate-monotonic schedulability of a given periodic task set. Tighter bounds were

also given in [4].

3. Summary
Both the basic priority inheritance protocol and the priority ceiling protocol correct !he unbounded
priority inversion problem caused by existing Ada rules. However, the priority ceiling protocol
minimizes the blocking of high-priority tasks better than the basic priority inheritance protocol.

Under the priority ceiling protocol, a task can be blocked by lower priority tasks at most once. In

addition, this protocol prevents mutual deadlocks as long as each task, when executing alone,
does not deadlock with itself. Finally, the implementation of this protocol may well be simpler

than the current rules since at most one task can be queued per server task and only one
priority-ordered queue need be kept--the queue of tasks that are ready to run or blocked. It also

seems likely that a useful set of real-time applications can be programmed using the limited form i

of server tasks currently allowed by the protocol (see the companion paper [3]). Further work is
underway to extend the protocol and verify its utility.

4. Acknowledgement

We are grateful to Jan Storbank Pedersen for suggestions that helped to clarify and correct •

earlier drafts of this paper.

I
I
i
i
i

i

6 CMU/SEI-88-SR-4

References
[1] Cornhill, D.

Task Session Summary.
In Proceedings of ACM International Workshop on Real-Time Ada Issues, pages 29-32.

Ada Letters, VII, 6, 1987.

[2] Liu, C. L. and Layland, J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment.3 JACM 20:46-61, 1973.

[3] Locke, D. and Goodenough, J. B.
A Practical Application of the Ceiling Protocol in a Real-Time System.
May, 1988.

[4] Sha, L, Rajkumar, R. and Lehoczky, J. P.
Priority Inheritance Protocols-An Approach to Real- Time Synchronization.
Technical Report CMU-CS-87-181, Carnegie-Mellon University, Computer Science De-

partment, 1987.

II
I

I
I

I

I
I
I
I
U
I
I
I
I
I
I
I
I
I
I
I
I

S CMUISEI-88-SR.4 I
I

I
Appendix

3 A given task's execution can be delayed in two ways: either it is preempted by the execution of a
higher priority non-server task (or the execution of a server on behalf of such a task), or it is
blocked by a server executing on behalf of a lower priority task. The priority ceiling protocol limits
the amount of blocking of a task to at most one server call made by a lower priority task, whereas
the amount of blocking for the basic priority inheritance protocol can be more. Blocking can occur
In three ways:

o Direct blocking: the called task either has a queued task or is executing a rendez-
vous. (This is the normal form of Ada blocking and is the price paid for consistency
in shared data.)

* Push-through blocking: a medium-priority task is unable to execute because a server
task executing on behalf of a lower priority task Is blocking the execution of a high-
priority task and, therefore, Is executing instead of the medium-priority task. (This is
the price paid to avoid indefinite blocking of high-priority tasks.)

o Ceiling blocking: although the called task would normally be able to accept the call
(because it is not executing on behalf of any other task), some server task is execut-
ing with a priority ceiling higher than or equal to that of the calling task. (This is the
price paid to avoid deadlock and chained blocking. Although it sometimes introduces
extra delays in servicing a call, the overall effect is to reduce the worst-case blocking
delays for high-priority tasks.)

An example showing the effect of the priority ceiling protocol is given in Figure 1. This figure
shows the execution of seven tasks, including two server tasks. The non-server tasks are labeled
with their priority, e.g., task 5 has the highest priority. The server tasks have the lowest priority:
S1 has priority 0 and S2 has priority -1. The calling relationships among the tasks are as follows:

o Task 5 calls an entry of server task S2. The entry call takes one unit of time.
o Task 4 calls an entry of server task Si. The entry call takes one unit of time.
o Task 3 makes no entry calls.
o Task 2 calls an entry of server task S2; during this rendezvous, S2 calls an entry of

task S1. (This illustrates the effect of the protocol for nested entry calls.) The entry
call takes 4 units of time, including the time used by the rendezvous with S1.

o Task I calls an entry of server task Si. The entry executes using 4 units of time.

Since S1 is called on behalf of tasks 1, 2, and 4, Sl's priority ceiling is 4. Since S2 is called on
behalf of tasks 2 and 5, its priority ceiling is 5.

The actions illustrated by Figure 1 are explained below, but the overall effect to note is that the
higher priority tasks complete their execution much earlier under the priority ceiling protocol than3 under the basic priority inheritance protocol (illustrated in Figure 2).

* At time t1, all tasks are activated, but only tasks 1, S1, and S2 are ready to run.3 Since task 1 has the highest priority, its execution begins.

I
UCMUISEI-88.SR-4 9

I

I

I
t, t S t t9 til t13 t.15 t17 t19 t21

5 _, " C2______. ________ __ _

clled by 11 1 1 l14; S21

WEII.-I 24L P. P lt2

. . .

S2 PcPi P P P P :P P P P p P C

t t3 tS t7 t9 tll t13 tS t17 t19 t21 I
4 server called by task 1 executing in rendezvous at priority 4. The thin line indicates the end

~of the rendezvous with task 1.

r server execuing at priorit 1; black par indicates cod outsid of rendezvous-, the shaded

part indicates code inside the rendezvous.

accepted call to server 1 P preempted by higher priority task execution

directly blocked call to server 1 I executing code outside rendezvous

Spush-through blockingI

E2] ceiling blocking (call to server 2)

Figure 1: The Priority Ceiling Protocol

10 CMU/SEI-88-SR-4I

I

I
• At time t2, task I attempts to call server S1. Since no server tasks are executing on

behalf of any task, the call succeeds. Since the server has not yet had time to
execute its select statement, the call Is queued, and server S1 starts executing at
priority 1, the priority of its queued task. Eventually its select statement is executed
and the waiting call is accepted; the rendezvous starts. Execution continues at prior-
ityl.I At time t3 , task 2 starts its execution. Since task 2 has higher priority than the
current priority of server tasks S1, S2, and task 1, the execution of these tasks is
preempted.

* At time t4, task 2 attempts to call server task S2. We now examine the priority
ceilings of all server tasks that are executing on behalf of some task other than task
2. There Is only one (server task Si) and its priority ceiling is 4. Since this priority
ceiling exceeds task 2's current priority, task 2 is blocked; i.e., its execution is
suspended and the entry call is not made. In particular, task 2 is not queued for S2.
Since S1 blocks the execution of task 2, S1 inherits task 2's priority. S1 is now the
highest priority task that can run.
The blocking of the call to S2 Is an example of ceiling blocking. This kind of blocking
occurs because of the priority ceiling protocol. Although it may seem counter-
intuitive to block task 2 even though its call can otherwise be accepted, the example
given here shows that the overall effect on timing behavior is beneficial.

* At time t5, task 3 starts ts execution. Since its priority is higher than the current
priority of any task that is ready to run, it preempts the execution of tasks S2, S1, 1,
and 2.

e At time ts , task 4 starts its execution. Since its priority is higher than the execution
priority of any other task that is ready to run, it preempts the execution of tasks S2,
S1, 1, 2, and3.

* At time t7, task 4 attempts to call server task S1. We examine the priority ceiling of
all server tasks that are executing on behalf of some task other than task 4. S1 is
the only such task (it is executing on behalf of task 1). Si's priority ceiling is 4, which
is equal to the priority of the calling task, so task 4's execution is blocked. In this
case, since task 4 is calling S1 and S1 is already in rendezvous with another task,
the call could not be accepted in any case. This is, therefore, an example of direct
blocking.
Since S1 is blocking-task 4, its execution priority is increased to 4. S1 is now the
highest priority task able to execute. Tasks 2 and 3 are now blocked from execution
because S1 is executing with a higher priority. Since S1 is executing on behalf of
task 1, its execution priority would normally be 1. If it did not inherit the priority of the
task it is blocking, task 4 would still be blocked, but task 3 would be the highest

priority task able to run and would preempt the execution of tasks 2, 1, S1, and S2.
The effect would be to delay task 4 even longer. The blocking of tasks 2 and 3 is an
example of push-through blocking.

* At time t., task 5 starts its execution. Since its priority is higher than the current
priority of any executing task, Si's execution is preempted, and task 5 starts to
execute.

* At time t, task 5 attempts to call S2. We examine the priority ceiling of all server
tasks that are executing on behalf of some task other than task 5. S1 is the only
such task (executing on behalf of task 1). Si's priority ceiling is 4, which is less than
task 5's priority, so the call can be accepted. Since S2 has not yet had an oppor-
tunity to execute its select statement, task 5 is queued. S2 is given the priority of its
queued task and its execution starts. When its select statement is executed, the
waiting call is accepted, and the rendezvous starts; execution continues at priority S.

CMUISEI-88-SR-4 11I

Task 5's call to S2 can be accepted because task 2's attempted call (at time t4) was
blocked. This is where the blocking of task 2 pays off-a high-priority task that would
otherwise be blocked while S2 is executing can now be serviced. Comparison with
the basic priority inheritance protocol (Figure 2) is worthwhile.

* At time t1o, the rendezvous with S2 is completed. S2 reverts to its assigned priority,
so its execution Is preempted by the execution of task 5.

" At time tI, task 5 completes its execution. Task 4's call to S1 is still blocked since
S1 has not yet finished its rendezvous. S1 has priority 4 and therefore continues its
execution.

" At time t12, task Si completes its rendezvous. Its priority returns to normal. S1 has
been blocking the execution of tasks 2, 3, and 4. Completion of the rendezvous
means tasks 2 and 4 are no longer blocked because S1 is no longer executing on
behalf of any task. In addition, SI's low-priority means it no longer blocks task 3. So
all tasks are eligible to run. Since task 4 has the highest priority, its execution
resumes.
Task 4 was suspended just before making the call to S1. Now that its execution has
resumed, it again attempts to call S1. Since there are no server tasks executing on
behalf of any task, the call succeeds. Since S1 just completed its rendezvous, it is
not yet ready to accept the call (it is not yet waiting at an accept statement), so the
call is queued. Since the call is queued, Si's current priority is raised to the current
priority of the calling task.
S1 now has the highest execution priority. It begins execution and eventually ex-
ecutes its select statement. The waiting call is accepted and the rendezvous begins.
Execution continues at priority 4.
Note that if task 4 had attempted to call S2 instead of S1, its call would have been
serviced before task 2's call, even though task 2 made its call first. In effect, calls
are automatically serviced in order of priority under the priority ceiling (and the basic
priority Inheritance) protocol.

" At time t 13 , task S1 completes its rendezvous. Its priority returns to normal. All tasks
are now eligible to run. Since task 4 has completed its call to S1 and has the highest
priority, its execution resumes.

" At time t14, task 4 completes its execution. Task 3 now has the highest priority and
resumes its execution.

" At time t, 5, task 3 completes its execution. Task 2 now has the highest priority and
resumes its execution by attempting to call server S2. Since no server tasks are
executing on behalf of any tasks, the call succeeds. Since S2 has just completed a
rendezvous, it is not yet ready to accept the call, so the call is queued. Since the call
is queued, S2's execution priority is raised to the execution priority of the calling task.
S2 now has the highest execution priority. It begins execution and eventually ex-
ecutes its select statement. The waiting call is accepted and the rendezvous begins.
Execution continues at priority 2, the current priority of the calling task.

" At time tie, execution of the rendezvous continues.
" At time t17, S2 attempts to call S1. S2 Is executing on behalf of task 2. We check to

see if there are any other server tasks that are executing on behalf of some task
other than task 2. Since there are no such tasks, It doesnt matter that S2's current
priority Is less than Si's priority ceiling; the call succeeds.
The call is queued, and S1 starts executing at priority 2, the current priority of its
caller, S2. Eventually the call Is accepted and the rendezvous begins.

12 CMU/SEI-88-SR-4

If during this execution of SI, task 5 started execution and attempted to call S2, then
S2 and SI would block the execution of task 5, and Si would therefore resume
execution at priority 5. Note that priority 5 is higher than Si's priority ceiling. The
priority ceiling Is only determined by the priority of tasks that call a server directly or
indirectly; It is not affected by the priority of tasks that a server can block. Therefore,
a server's priority ceiling is not its maximum execution priority but, instead, reflects
the maximum priority of its client tasks.

" At time tie, S1 completes execution of the rendezvous. Sl's priority returns to nor-
mal and its execution Is preempted by S2, which is still executing at priority 2. S2
continues executing its rendezvous, at the priority of its calling task.

* At time t 1, S2 completes execution of its rendezvous. Its priority returns to normal,
so its execution Is preempted by task 2.

e At time t2o, task 2 completes its execution. Task 1 can now resume its execution.
" At time t21 , task I completes its execution.

I We now determine the worst-case blocking time for each task. Under the priority ceiling protocol,

a server S can block a non-server task J:

3 * if the priority ceiling of S is higher than or equal to the priority of J, and

* if there exists a lower priority task which may call S.

In this example, the maximal entry call duration of both S, and S2 is 4. Hence, if a task can be
blocked once by either S, or S 2, the blocking time is 4. Finally, recall that the priority ceilings of
S, and S2 are 4 and 5, respectively. The worst-case blocking time for each task is as follows.

" The worst-case blocking time for task 1, B1, is zero since there are no lower priority
client tasks that can invoke a server.

" The worst-case blocking time for task 2, B2 , is 4 because task 2's priority is lower
than the ceiling of server S1. In addition, S, can be called by lower priority task 1.
Task 2's priority is also lower than the priority ceiling of S 2 , but since no lower priority
client task calls S2, task 2's blocking time is independent of the time taken for any
entry calls to S 2 .

" The worst-case blocking time for task 3, B3, is 4 because task 3's priority is lower
than the priority ceilings of S1 and S 2 . In addition, either server can be called by a
lower priority task, and the maximum duration of each such call is 4. Note that task 3
has a non-zero blocking time even though it makes no entry calls.

" The worst-case blocking time for task 4, B4, is 4 because task 4's priority is not
higher than the ceilings of servers S, and S 2 . Both servers can be called by lower
priority tasks, and the maximum duration of each such call is 4.

" The worst-case blocking time for task 5, B5. Is 4 because server S2's priority ceiling
is equal to the priority of task 5, S2 can be called by task 2, and task 2's entry call
takes 4 units of time.

Note that to minimize the effect of the blocking times, entry calls of low-priority tasks should be

short.

The effect of the basic priority inheritance protocol is indicated in Figure 2.

o At time t1, SI and S2 are preempted and task I's execution begins.

I

4 Bp m E / B ~ B l p , P % PP Pm

E4

5 D~~2 D&N 2 C 2 20

C2R P P P PPPP

1- B : 1

t C 73 t 7 tg tl t1 9

1 rcalled by ak1 xctn nrnevu tpirt 4 h hnln niae h n

-~I 1 2 1 - -- - -- -
IB~Ip~ IP P P P :%%]UOPP

13 1i C1 IC2
2 pp BI~ICG% : PP P PY

~of the rendezvous with task 1.

server executing at priority 1; black part indicates code outside of rendezvous; the shaded
part indicates code inside the rendezvous.

accepted call to server I P preempted by higher priority task execution

[Eldirectly blocked call to server 1 executing code outside rendezvous

Spush-through blockingI

Figure 2: The Basic Inheritance Protocol

14 CMU/SEI-88-SR-4m

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 2: The Basic inheritance Protocol

I 14

I

" At time t2, task 1 attempts to call server S1. Since S1 is not executing on behalf of
any task, the call succeeds; since S1 has not yet had time to execute its select
statement, the call is queued; server S1 starts executing at priority 1, the priority of
its queued task. Eventually its select statement is executed and the waiting call is
accepted; the rendezvous starts. Execution continues at priority 1.

* At time t3 , task 2 starts its execution. Since task 2 has higher priority than the
current priority of tasks S1, S2, and task 1, the execution of these tasks is
preempted.

* At time t4, task 2 attempts to call server task S2. Since S2 is not executing on behalf
of any task, the call is accepted (unlike the case of the priority ceiling protocol).
Since S2 has not yet had time to execute its select statement, the call is queued;
server 82 starts executing at priority 2, the priority of its queued task. Eventually its
select statement is executed and the waiting call is accepted; the rendezvous starts.
Execution continues at priority 2.

* At time t5, task 3 starts its execution. Since its priority is higher than the current
priority of any task that is ready to run, it preempts the execution of tasks S2, S1, 1,
and 2.

" At time t6, task 4 starts its execution. Since its priority is higher than the execution
priority of any other task that is ready to run, it preempts the execution of tasks S2,
S1, 1,2, and 3.

" At time t7, task 4 attempts to call server task S1. Since S1 is executing on behalf of
task 1, task 4 is blocked; i.e., its execution is suspended and the entry call is not
made. Since Si now blocks the execution of task 4, S1 inherits task 4's priority and I
resumes execution.

* At time t., task 5 starts its execution. Since its priority is higher than the current
priority of any executing task, Si 's execution is preempted and task 5 starts to ex-
ecute.

" At time t9, task 5 attempts to call $2. $2 is executing on behalf of task 2, so task 5 is
blocked. Since $2 now blocks the execution of task 5, it inherits task 5's priority and
is now the highest priority task ready to run. Note that under the priority ceiling
protocol, task 2's earlier call to S2 had been blocked so that task 5's call could be
accepted.

" At time t1o, S2 attempts to call S. Since S1 is executing on behalf of task 1, this call
is blocked and Si inherits the current priority of S2. S1 is now the highest priority
task ready to run; it resumes execution at priority 5.
The situation at t1o illustrates how chained blocking can arise under the basic priority I
inheritance protocol. Task 5's call cannot be accepted by S2 until both S2 and S1

complete their execution on behalf of tasks 1 and 2. Under the priority ceiling
protocol, server calls on behalf of at most one task need to be completed. Under the
inheritance protocol, chained blocking can occur even when nested server calls are
not made.

* At time t11, execution of S1 continues at priority 5.
* At time t12, S completes its rendezvous. Its priority returns to normal. S1 has been

blocking tasks 4 and 5. Since $2 is still blocking task 5, it executes at priority 5. Its
execution is resumed and its call to S1 is now accepted. Note that S2's call suc-
ceeds even though task 4 called S1 first-the effect of the blocking rule is to ensure I
calls are accepted in order of priority rather than in order of time.

" At time t13, task S1 completes its rendezvous. Its priority returns to normal. All tasks
are now eligible to run. Since S2 is still blocking task 5, its execution resumes at I
priority 5.

CMU/SEI-88-SR-4 15 I

i * At time t 14 , S2 completes its rendezvous. Its priority returns to normal and no longer
blocks task 5. Task 5 is now the highest priority ready to run, and its call to S2
succeeds. S2 resumes execution at priority 5.

o At time t, 5 , S2 completes task 5's call. Its priority returns to normal. Task 5 con-
tinues its execution.

* At time t1s, task 5 completes its execution. Task 4 Is now the highest priority task
ready to execute. Its call to S1 succeeds, and S1 starts executing at priority 4.

e At time t 17, Si completes task 4's call. ts priority returns to normal, and task 4
continues its execution.

o At times tle.21, tasks 4, 3, 2, and I complete their execution.

II

I
I
I
I
I
I
I
I
I

16 CMUiSE;-88-SR-4

I

